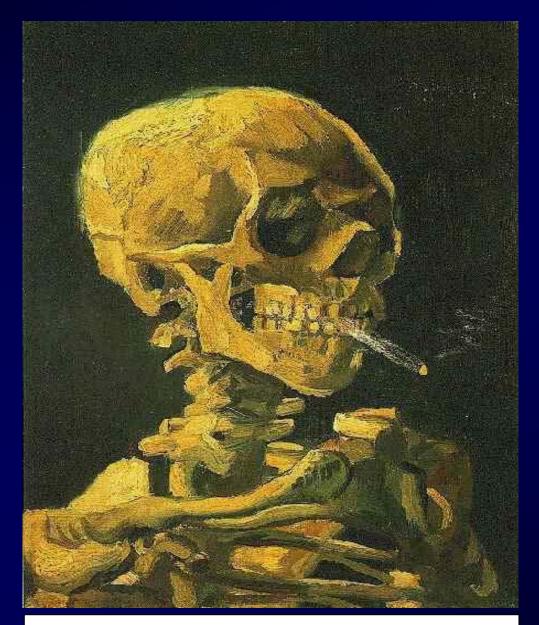

## Putting Cancer Risks from Food in Perspective

Bruce N. Ames Children's Hospital Oakland Research Institute Professor, University of California, Berkeley

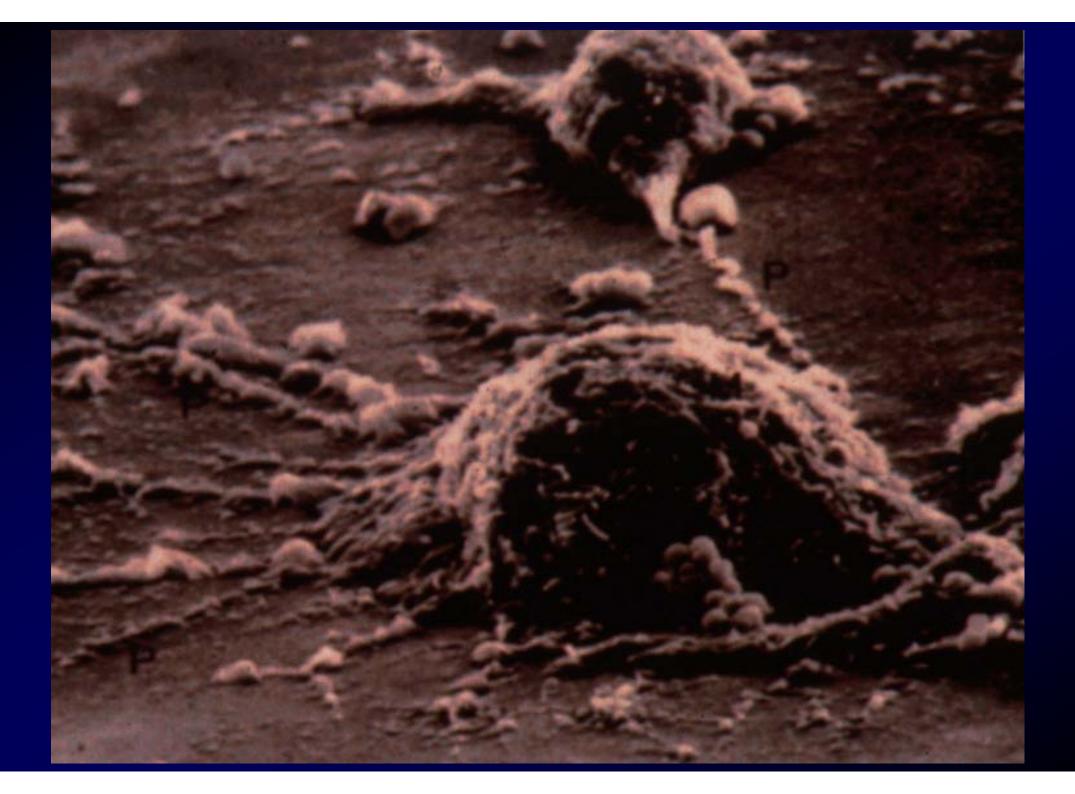
14May 2013 Istanbul



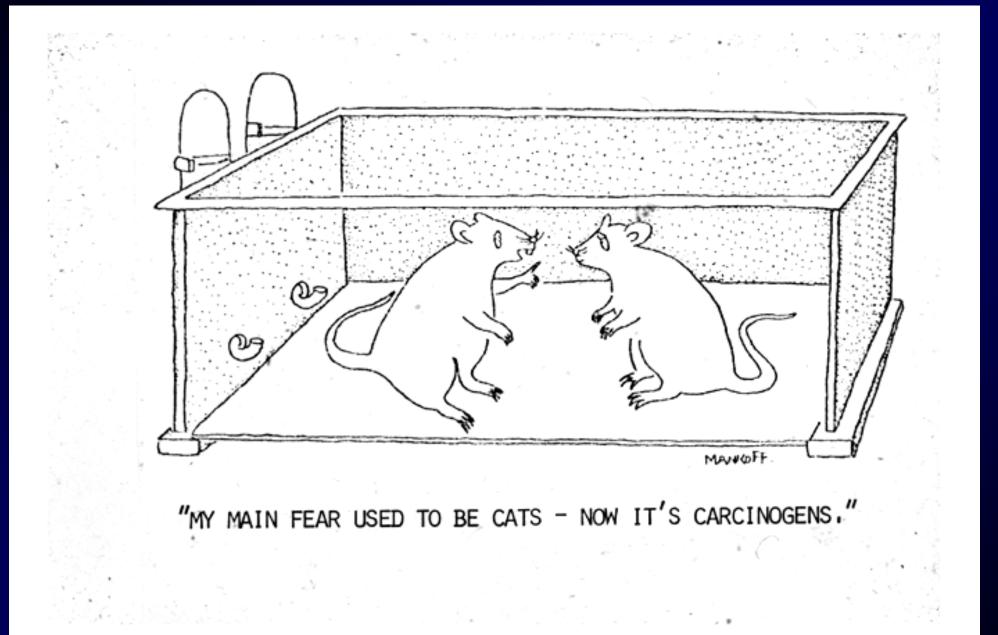
## **The Causes of Cancer**


~30% Smoking ~35% Unbalanced Diets Too Many Calories: Obesity **Too Little Fiber & Micronutrients** ~20% Chronic Infections Mostly in Poor Countries ~20% Hormones Breast, Endometrial, Etc. ~2% Occupation <1% Pollution Mostly Heavy Air Pollution

Total = 107% because of multiple causes


## Total Cancer Mortality in the United States, 1955-1990




\* Mean of seven age-specific rates, ages 35-69; annual death rate/1000.
 Source: R. Peto, A.D. Lopez, J. Boreham, M.Thun, and C. Heath, Jr., *Mortality from Smoking in Developed Countries*. 1950-2000 (Oxford: Oxford University Press, 1994)



Van Gogh, 1885, Skull with Cigarette



# **Oxidants from Phagocytic Cells** NO• ONOO-O<sub>2</sub>-• $H_2O_2$



#### Bna\_0011\_0

#### **Proportion of Chemicals Evaluated as Carcinogenic**

Chemicals tested in both rats and mice All Chemicals Naturally-occurring chemicals Synthetic chemicals Chemicals tested in rats and/or mice All Chemicals Natural pesticides Mold toxins Natural chemicals in roasted coffee **Commercial pesticides Mutagens** Non-mutagens **INNES** negatives chemicals retested

PDR drugs with reported cancer tests FDA database of drug submission 377/636 (59%) 86/152 (57%) 291/484 (60%)

748/1430 (52%) 39/73 (53%) 15/24 (63%) 21/30 (70%) 79/196 (40%) 287/382 (75%) 200/428 (47%) 16/34 (47%) 117/241 (49%) 125/282 (44%)

#### **49 NATURAL PESTICIDES (AND METABOLITES) IN CABBAGE**

#### GLUCOSINOLATES

2-propenyl glucosinolate (sinigrin)
3-methyl-thio-propyl glucosinolate
3-methyl-sulfinyl-propyl glucosinolate
3-butenyl glucosinolate
3-butenyl glucosinolate
2-hydroxy-3-butenyl glucosinolate
4-methyl-thio-butyl-glucosinolate
4-methyl-sulfinyl-butyl-glucosinolate
4-methylsulfonyl-butyl-glucosinolate
Benzyl glucosinolate
Propyl glucosinolate
Butyl glucosinolate

#### INDOLE GLUCOSINOLATES AND RELATED INDOLES

2-indolyl-methyl glucosinolate (glucobrassicin)1-methoxy-3-indolylmethyl (neoglucobrassicin)

3-indole-3-carbinol (IC)

3-indole-3-acetonitrile

3 3' -diindolvlmethane

#### ISOTHIOCYANATES AND GOITRIN

allyl isothiocyanate 3-methyl-thio-propyl isothiocyanate 3-methyl-sulfinyl-propyl isothiocyanate 3-butenyl isothiocyanate 5-vinyloxazolidine-2-thione (goitrin) 4-methylthiobutyl isothiocyanate 4-methylsulfonylbutyl isothiocyanate 4-pentenyl isothiocyanate Benzyl isothiocyanate Pheylethyl isothiocyanate **ALCOHOLS Menthol** 

Neomenthol

Isomenthol

**KETONES** 

Carvone

#### **CYANIDES**

1-cyano-2,3-epithiopropane 1-cyane-3,4-epithiobutane 1-cyano-3,4-epithiopentane Threo-1-cyano-2-hydroxy-3,4 epithiobutane Erythro-1-cyano-2-hydroxy-3,4 epithiobutane 2-phenylpropionitrile Allyl cyanide\* 1-cyano-2-hydroxy-3-butene 1-cyano-3methylsulfinylpropane 1-cyano4methylsulfinylbutane PHENOLS AND TANNINS 2-methoxyphenol 3-caffoylquinic acid (chlorgenic acid 4-caffoylquinic acid 5-caffoylquinic acid (neochlorogenic acid) 4-p-coumaroylquinic acid 5-p-coumaroylquinic acid 5-feruloylquinic acid

| Plant<br>Food             | Rodent<br>Carcinogen           | Concentration<br>(ppm) |
|---------------------------|--------------------------------|------------------------|
| Parsley                   | 5- and 8-methoxypsoralen       | 14                     |
| Parsnip, cooked           | "                              | 32                     |
| Celery                    | "                              | .8                     |
| Celery, new cultivar      | "                              | 6.2                    |
| Celery, stressed          | "                              | 25                     |
| Mushroom, commercial      | <i>p</i> -hydrazinobenzoate    | 11                     |
| Mushroom, commercial      | glutamyl-p-hydrazinobenzoate   | 42                     |
| Cabbage                   | sinigrin (allylisothiocyanate) | 35-590                 |
| Radish                    | "                              | 11                     |
| Cauliflower               | "                              | 12-66                  |
| Brussels sprouts          | "                              | 110-1,560              |
| Mustard (brown)           | "                              | 16,000-72,000          |
| Horseradish               | "                              | 4,500                  |
| Orange juice              | limonene                       | 31                     |
| Mango                     | "                              | 40                     |
| Pepper, black             | "                              | 8,000                  |
| Basil                     | estragole                      | 3,800                  |
| Fennel                    | "                              | 3,000                  |
| Nutmeg                    | safrole                        | 3,000                  |
| Mace                      | "                              | 10,000                 |
| Pepper, black             | "                              | 100                    |
| Sesame seeds (heated oil) | sesamol                        | 75                     |
| Basil                     | benzyl acetate                 | 82                     |
| Jasmine tea               | "                              | 230                    |
| Honey                     | "                              | 15                     |

### **PESTICIDE RESIDUES**

- 1) US Consumption FDA Estimate = 0.09 mg/day
  - 0.04 mg known non-carcinogens
  - 0.05 mg potential carcinogens

~105 chemicals in ppb range

## NATURAL PESTICIDE RESIDUES

- ~5000 chemicals at 1000 ppb or more
- 2) 73 assayed in animal cancer tests: 39 are **carcinogenic**
- 3) 72 tested for clastogenicity:35 (48%) positive in all tests
- Of synthetic chemicals tested (951) 53% were **clastogenic**

## Comparison of average exposures to natural and synthetic pesticides.

| HERP (%) | Average daily human exposure        |
|----------|-------------------------------------|
| 0.1      | Coffee (from 13.3 g) (3 cups)       |
| 0.04     | Lettuce (14.9 g) (1/67th head)      |
| 0.03     | Safrole in spices                   |
| 0.03     | Orange juice (138 ml) (4/5th glass) |
| 0.03     | pepper, black (446 mg)              |
| 0.02     | Mushroom (2.55 g)(1/6th)            |
| 0.02     | Apple (32.0g) (1/7th)               |
| 0.01     | Celery, (21.6g) (2/5th stalk)       |
| 0.006    | Coffee (from 13.3 g) (3 cups)       |
| 0.004    | potato (54.9 g; peeled) (1/4th)     |
| 0.003    | nutmeg (27.4 mg)                    |
| 0.003    | carrot (12.1 g) [1/10th]            |
| 0.002    | DDT: daily dietary average          |
| 0.002    | apple juice (6 oz.;177 ml)          |
| 0.001    | Plum (1.86 g)(1.25th)               |
| 0.001    | Pear (3.29 g) (9/100th)             |
| 0.0009   | Brown mustard (68.4 mg)             |
| 0.0008   | (DDE: daily dietary average)        |
| 0.0006   | Celery (21.6 g) [2/5th stalk]       |
| 0.0006   | Mushroom (2.55g) [1/6th]            |
| 0.0004   | EDB: Daily dietary average          |

#### Human dose of rodent carcinogen

Caffeic acid, 23.9 mg Caffeic acid, 7.90 mg Safrole, 1.2 mg d-Limonene, 4.28 mg d-Limonene, 3.57 mg Mix of hydrazines, etc. Caffeic acid, 3.40 mg Caffeic acid, 2.33 mg catechol, 1.33 mg caffeic acid, 867 µg d-Limonene, 466 µg Caffeic acid, 624 µg [DDT, 13.8 µg (before 1972 ban)] [UDMH, 5.89 µg (from Alar, 1988)] Caffeic acid, 257 µg Caffeic acid, 240 µg Allyl isothiocyanate, 62.9 µg [DDE, 6.91 µg (before 1972 ban)] 8-Methoxypsoralen, 13.2 µg Glutamyl-p-hydrazinobenzoate, 107 µg [EDB, 420 ng (before 1984 ban)]

## Comparison of average exposures to natural and synthetic pesticides (continued).

HERP (%) Average daily human exposure

0.0003 Carbaryl: daily dietary avg. 0.0002 Toxaphene: daily dietary avg. 0.0002 Apple, 1 whole (230 g) Mango (522 mg) (1/500th) 0.0001 0.00009 Mushroom (2.55 mg) (1/6th) 0.00008 DDE/DDT: daily dietary avg. 0.00007 Parsnip (54 mg) (1/3300th) parsley, fresh (324 mg) 0.00005 0.00002 Dicofol: daily dietary avg. 0.00001 Cocoa (3.34g) (4/5th serving) Lindane: daily dietary avg. 0.000001 0.0000004 PCNB: daily dietary avg. 0.0000001 Chlorobenzilate: daily dietary avg. < 0.0000001 Chlorothalonil: daily dietary avg. 0.00000008 Folpet: daily dietary avg. Captan: daily dietary avg. 0.00000006

Human dose of rodent carcinogen

Carbaryl, 2.6µg (1990) Toxaphene, 595 ng (1990) [UDMH, 598 ng (from Alar, 1988)] d-Limonene, 20.9 µg p-Hydrazinobenzoate, 28 µg DDE, 659 ng (1990) 8-Methoxypsoralen, 1.57 µg 8-Methoxypsoralen, 1.17 µg Dicofol, 544 ng (1990)  $\alpha$ -Methylbenzyl alcohol, 4.3 µg Lindane, 32 ng (1990) PCNB (Quintozene), 19.2 ng (1990) Chlorobenzilate, 6.4 ng (1989) Chlorothalonil, <6.4 ng (1990) Folpet, 12.8 ng (1990) Captan 11.5 ng (1990)


## Carcinogenicity Status of Natural Pesticides Tested in Rode

| Carcinogen<br>s:<br>N=37 | Acetaldehyde methylformylhydrazone, allyl isothiocyanate, arecoline.HCL, benzaldehyde, benzyl acetate, caffeic acid, capsaicin, catechol, clivorine, coumarin, crotonaldehyde, 3,4-dihydrocoumarin, estragole, ethyl acrylate, N2- $\gamma$ -glutamyl-p-hydrazinobenzoic acid.HCL, hydroquinone, 1-hydroxyanthraquinone, lasiocarpine, d-limonene, 3-methoxycatechol, <i>8</i> -methoxypsoralen, N-methyl-N-formylhydrazone, 4-methylcatechol, methylhydrazine, monocrotaline, pentanal methylformylhydrazone, petasitenine, quercetin, reserpine, safrole, safrole, senkirkine, sesamol, symphytine                                                       |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Noncarcinogens:<br>N=34  | Atropine, benzyl alcohol, benzylixothiocyanate, benzyl thiocyanate, biphenyl, d-<br>carvone, codeine, deserpidne, disodium glycirrhysinate, ephedrine sulphate,<br>epigallocatechin, eucalyptol, eugenol, gallic acid, geranyl acetate, $\beta$ -N-[ $\gamma$ -/(+)-<br>glutamyl]-4-hydroxymethylphenylhydrazine, glycyrrhetirric acid, p-hydrazino-<br>benzoic acid, isosafrole, kaempferol, <i>dl</i> -menthol, nicotine, norharman,<br>phenethyl, isothiocyanate, pilocarpine, piperidine, protocatechaic acid, rotenone,<br>rutin sulfate, sodium benzoate, tannic acid, 1-trans- $\delta^9$ -tetrahydrocannabinol,<br>turmeric oleoresin, xinblastine |

These rodent carcinogens occur in: absinthe, allspice, anise, apple, apricot, banana, basil, beer, Broccoli, Brussels sprouts, cabbage, cantaloupe, caraway, cardamom, carrot, cauliflower, celery, cherries. Chili pepper, chocolate, cinnamon, cloves, coffee, collard greens, comfrey herb tea, corn, coriander, currants, dill., eggplant, endive, fennel, garlic, grapefruit., grapes, guava, honey, honeydew, melon, horseradish, kale, lemon, lentils, lettuce, licorice, lime, mace, mango, marjoram, mint, mushrooms, mustard, nutmeg,m onion, orange, paprika, parsley, parsnip, peach, pear, peas, black pepper, pineapple, plum, potato, radish, raspberries, rhubarb, rosemary, rutabaga, sage, savory, sesame seeds, soybean, star anise, tarragon, tea thyme, tomato, turmeric, and turnip.

# Ranking possible carcinogenic hazards (HERP) from natural and synthetic chemicals: Part 1

| HERP (%) | Daily human exposure                          | Human dose of rodent carcinogen |
|----------|-----------------------------------------------|---------------------------------|
| 140      | EDB: workers; daily intake<br>(high exposure) | Ethylene dibromide, 150 mg      |
| 17       | Clofibrate (average daily dose)               | Clofibrate, 2g                  |
| 16       | Phenobarbital, 1 sleeping pill                | Phenobarbital, 60 mg            |
| [14]     | Isoniazid pill (prophylactic dose)            | Isoniazid, 300 mg               |
| 6.2      | Comfrey-pepsin tablets, 9 daily               | Comfrey root, 2.7g              |
| [5.6]    | Metronidazole (therapeutic dose)              | Metronidazole, 2g               |
| 4.7      | Wine (250 ml)                                 | Ethyl alcohol, 30 ml *          |
| 4.0b     | Formaldehyde: Workers' average daily intake   | Formaldehyde, 6.1 mg            |
| 2.8      | Beer (12 ounces; 54 ml)                       | Ethyl alcohol, 18 ml            |
| 1.4b     | Mobile home air (14 hour/day)                 | Formaldehyde, 2.2 mg            |
| 1.3      | Comfrey-pepsin tablets, 9 daily               | Symphytine, 1.8 mg              |
| 0.4b     | Conventional home air (14 h/day)              | Formaldehyde, 598 µg            |
| [0.3]    | Phenacetin pill (average dose)                | Phenacetin, 300 mg              |
| 0.3      | Lettuce, 1/8 head (125 g)                     | Caffeic acid, 66.3 mg           |



Mutagenic Activity (Number of His<sup>+</sup> Revertant Colonies) of Albumin Pyrolyzed at Different temperature Under N<sub>2</sub> or Air Atmosphere

Yoshida, Matsumoto, & Nishigata, Agric. Biol. Chem. 44:253 (1980)

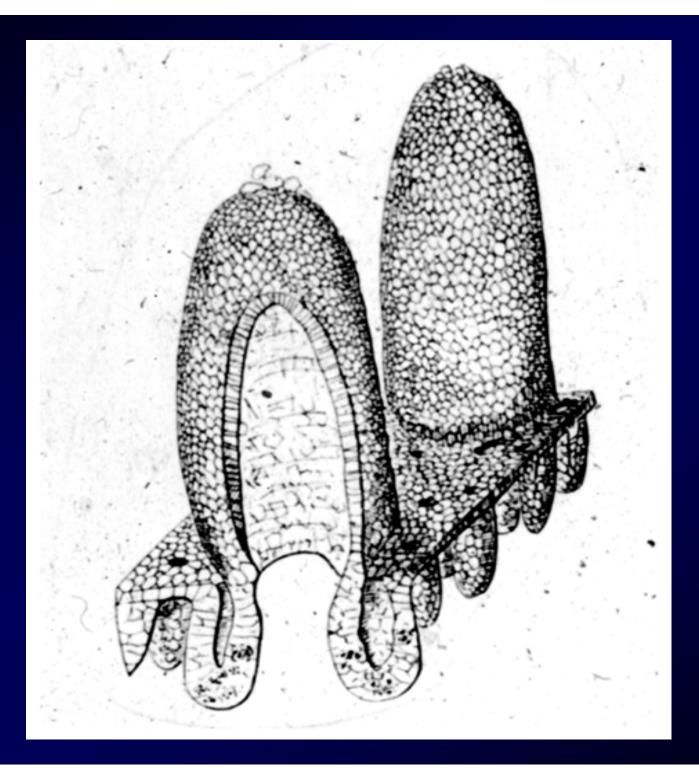
#### CARCINOGENICITY STATUS OF NATURAL CHEMICALS IN COFFEE

#### Carcinogens

Noncarcinogens

Yet to be Tested

Acetaldehyde, Benzaldehyde, Benzene, Benzofuran, Benzo(a)Pyrene, Caffeic Acid,Catechol, 1,2,5,6-Dibenzanthracene, Ethanol, Ethylbenzene, Formaldehyde,Furan, Furfural, Hydrogen Peroxide, Hydroquinone, Limonene, Styrene, and Toluene


Biphenyl, Eugenol, Phenol, Piperidine, and Acrolein

~ 1,000 chemicals

## **Vehicular Pollution**

| Means of Transport | Pollutant                             | <b>Emissions</b><br>(grams per mile) |
|--------------------|---------------------------------------|--------------------------------------|
| Horses             | Waste, solid<br>Waste, liquid         | 640<br>300                           |
| Automobiles        | Hydrocarbons<br>CO<br>NO <sub>x</sub> | 0.25<br>4.7<br>0.4                   |

J.H. Ausubel in: "Technology and Environment", National Academy of Engineering, 1989.





## Relax, l've come for your toaster.

Moderate Deficiency of an Essential Vitamin or Mineral Accelerates Diseases of Aging

Bruce N. Ames Children's Hospital Oakland Research Institute Prof. Emeritus, University of California, Berkeley 14 May 2013 Istanbul

| Biochem | ical Pathw | ays |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|---------|------------|-----|--|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|         |            |     |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|         |            |     |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|         |            |     |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|         |            |     |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|         |            |     |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And |
|         |            |     |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|         |            | RO  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|         |            |     |  |  | The second secon |                                         |
|         |            |     |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |

## ~40 Essential Micronutrients

- Biotin
- Folic acid
- Niacin
- Pantothenate
- Riboflavin
- Thiamine
- VitA
- VitB6
- VitB12
- VitC
- VitD
- VitE
- VitK

- Calcium
- Chloride
- Chromium
- Cobalt
- Copper
- lodide
- Iron
- Magnesium
- Manganese
- Molybdenum
- Phosphorus
- Potassium
- Selenium
- Sodium
- Zinc

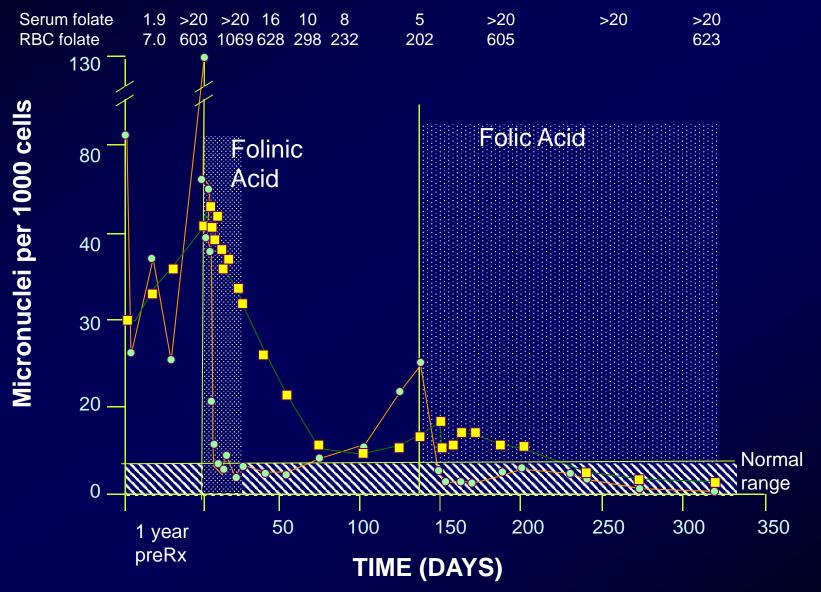
- Linolenic acid/DHA [ω-3]
- Linoleic acid [ω-6]
- Isoleucine
- Leucine
- Lysine
- Methionine
- Phenylalanine
- Threonine
- Tryptophan
- Valine
- Histidine
- Choline

## **Micronutrient Undernutrition in Americans**

|          |                  | % Ingesting<br>< EAR * |
|----------|------------------|------------------------|
| Nutrient | Population Group | From Food              |

#### **Minerals**

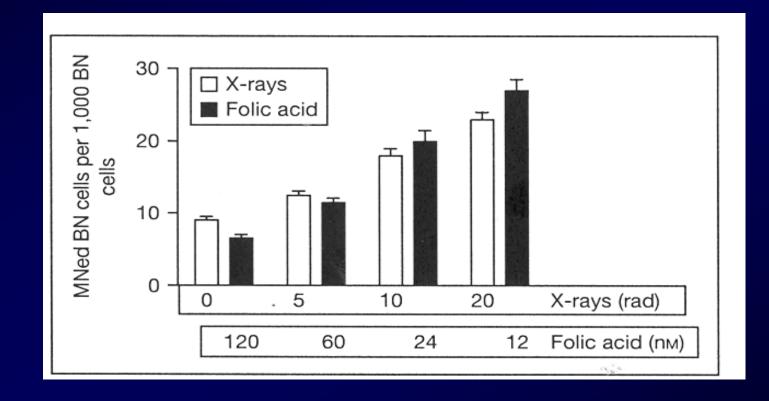
| Iron      | Menstruating Women | 16 % |
|-----------|--------------------|------|
| Magnesium | All                | 56 % |
| Zinc      | All                | 12 % |


#### Vitamins

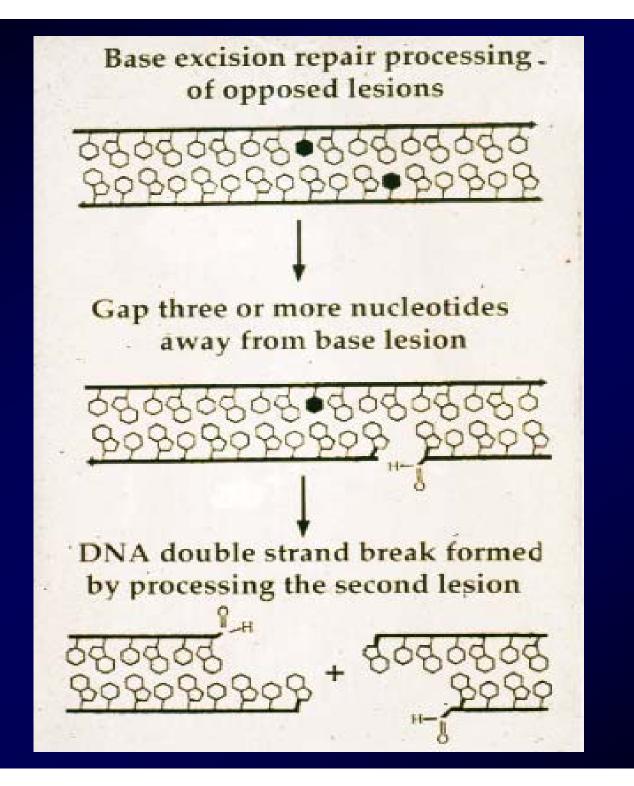
| B6                                                          | Women > 70 years | 49 % |
|-------------------------------------------------------------|------------------|------|
| Folate                                                      | Adult Women      | 16 % |
| Е                                                           | All              | 93 % |
| С                                                           | All              | 31 % |
| Very low intake: vitamins K, D; calcium, potassium, omega-3 |                  |      |

•USDA What we Eat in America (NHANES 2001-2002) Sept. 2005

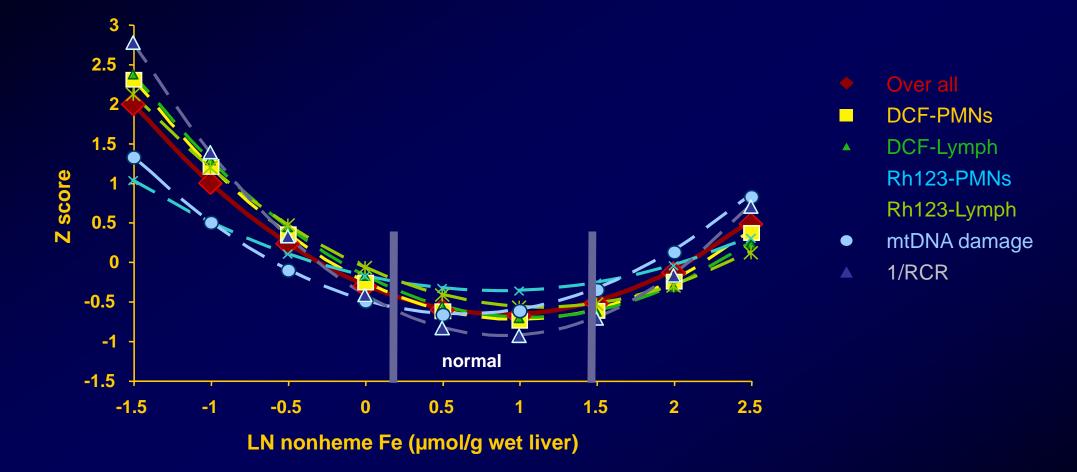



## Micronuclei in: RNA positive erythrocytes RNA negative erythrocytes



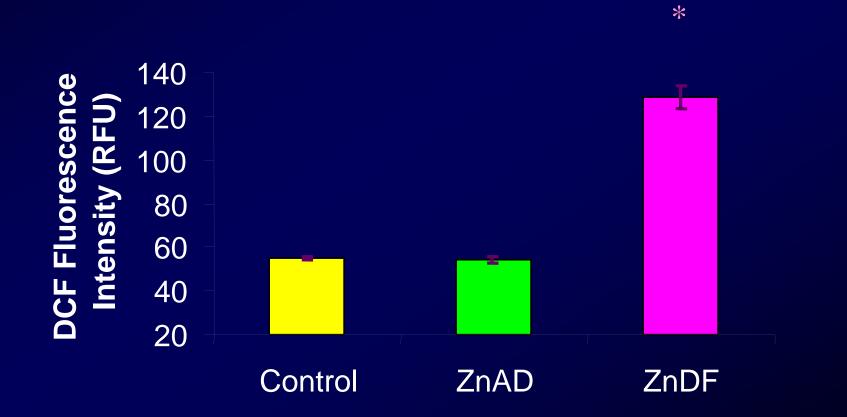

Everson RB, Wehr CM, Erexson GL, and MacGregor JT. (1988) J Natl Cancer Inst 80:525-9.

Dose-response on micronuclei induction in cultured lymphocytes

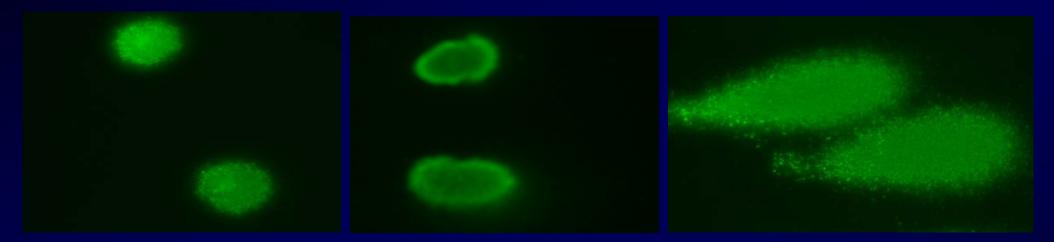

Acute exposure to X-rays vs. Folic Acid deficiency



Fenech 2003, Nutrition Research Reviews



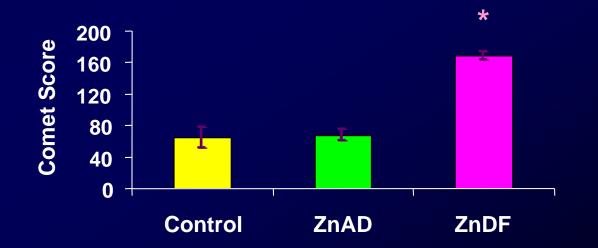

#### Analysis of nonlinear regression models: comparison of an overall model and individual models of Z-transformed values vs. In- nonheme liver iron



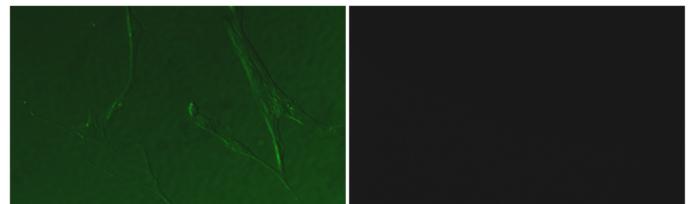

Each of the six dependent variables (that were analyzed by nonlinear regression in former figures) were transformed to Z scores and modeled as a quadratic function of the In-liver nonheme iron as the independent variable. The equation for the RCR ratio's Z score was obtained from inverted RCR values (1/RCR) so that normal rats had the lower instead of the higher values. For presentation purposes each model line was obtained from 9 values of liver iron. All statistics were performed as in materials and methods.

Zinc Deficiency Induces Increased Oxidative Stress in C6 Glioma Cells

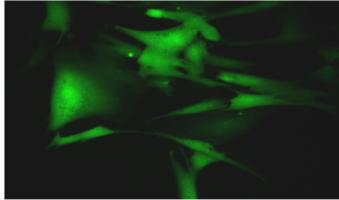



## Zinc Deficiency Induces Fapy Glycosylase (Fpg)-sensitive Single Strand Breaks in Human Lung Fibroblasts

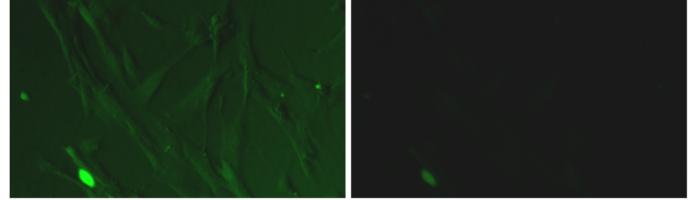


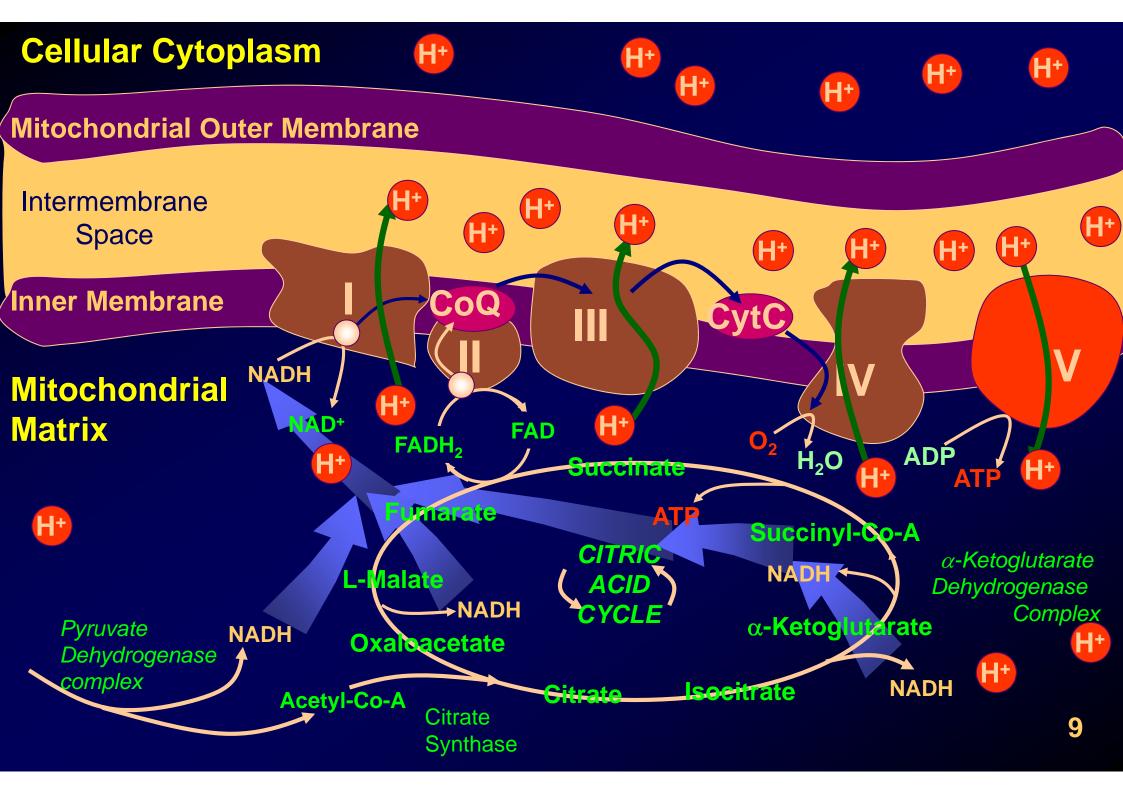

Control (+Fpg)

ZnAD (+Fpg)

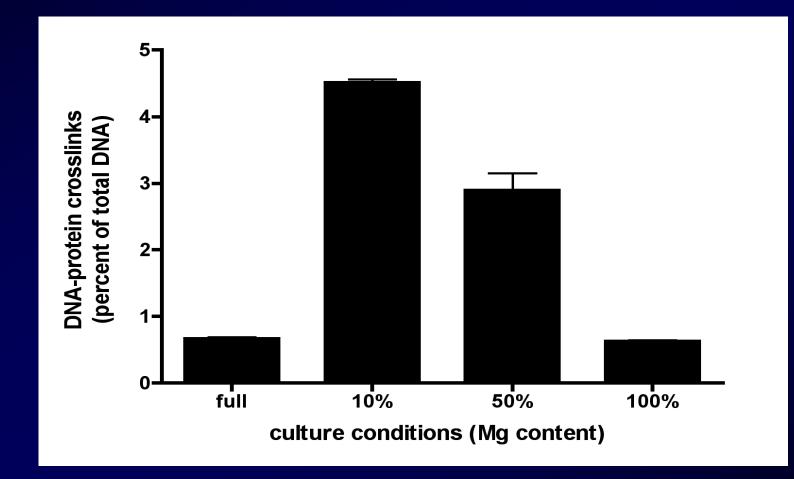

ZnDF (+Fpg)




#### **Biotin Sufficient**




#### **Biotin Deficient**




#### Biotin deficient + Biotin (5ng/ ml)





## Magnesium Deficiency Induces mtDNA-Protein Crosslinks



### **Calcium Deficiency**

Fenech: chromosome breaks Lipkin: colon cancer mice

## Folate Deficiency

MacGregor/Ames/Fenech: chromosome breaks mice/humans Willett: epi colon cancer humans Vitamin D Deficiency

Holick: epi many types of cancer Magnesium Deficiency

Bell: chromosome breaks humans Larsson: epi colorectal cancer humans Zinc Deficiency

Fong: esophageal cancer humans/rodents **Potassium Deficiency** [Chang: Cardiovascular Disease] Vitamin B12 Deficiency

Fenech: Chromosome breaks

## **Selenium Deficiency**

Rao: DNA damage Combs/Trumbo: Cancer humans

## **Omega-3 FA Deficiency**

Denkins: Cancer **Niacin Deficiency** Kirkland/Depeint: DNA damage

### Choline Deficiency da Costa: DNA damage in humans

*Proc. Natl. Acad. Sci. USA* Vol. 103, pp. 17589-17594, November 2006

#### Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage

Bruce N. Ames

Children's Hospital of Oakland Research Institute, Nutrition and Metabolism Center, 5700 Martin Luther King Jr. Way, Oakland, CA 94609

- Most of the world's population has inadequate intake of one or more micronutrients.
- Triage theory posits as a results of recurrent shortages of micronutrients during evolution, natural selection developed a metabolic rebalancing response to shortage.
- The rebalancing favors micronutrient-dependent protein needed for short term survival while those only required for long-term health are starved.
- This impairment results in insidious damage (e.g. increased DNA damage) that, over time, leads to the acceleration of age-associated diseases (e.g. increased cancer).

## **40 Essential Micronutrients**

- Biotin
- Folic acid
- Niacin
- Pantothenate
- Riboflavin
- Thiamine
- Vitamin A
- Vitamin B6
- Vitamin B12
- Vitamin C
- Vitamin D
- Vitamin E
- Vitamin K

- Calcium
- Chromium
- Cobalt
- Copper
- Fluoride
- Iodine
- Iron
- Magnesium
- Manganese
- Molybdenum
- Phosphorus
- Potassium
- Selenium
- Sodium
- Zinc

- Linolenic acid/DHA [ω-3]
- Linoleic acid [ω-6]
- Isoleucine
- Leucine
- Lysine
- Methionine
- Phenylalanine
- Threonine
- Tryptophan
- Valine
- Histidine
- Choline

16 Vitamin K Dependent Proteins (γ–glutamyl-carboxylase, vitK quinone reductase and vitK epoxide reductase)

**Coagulation Factors** 

**Other Proteins** 

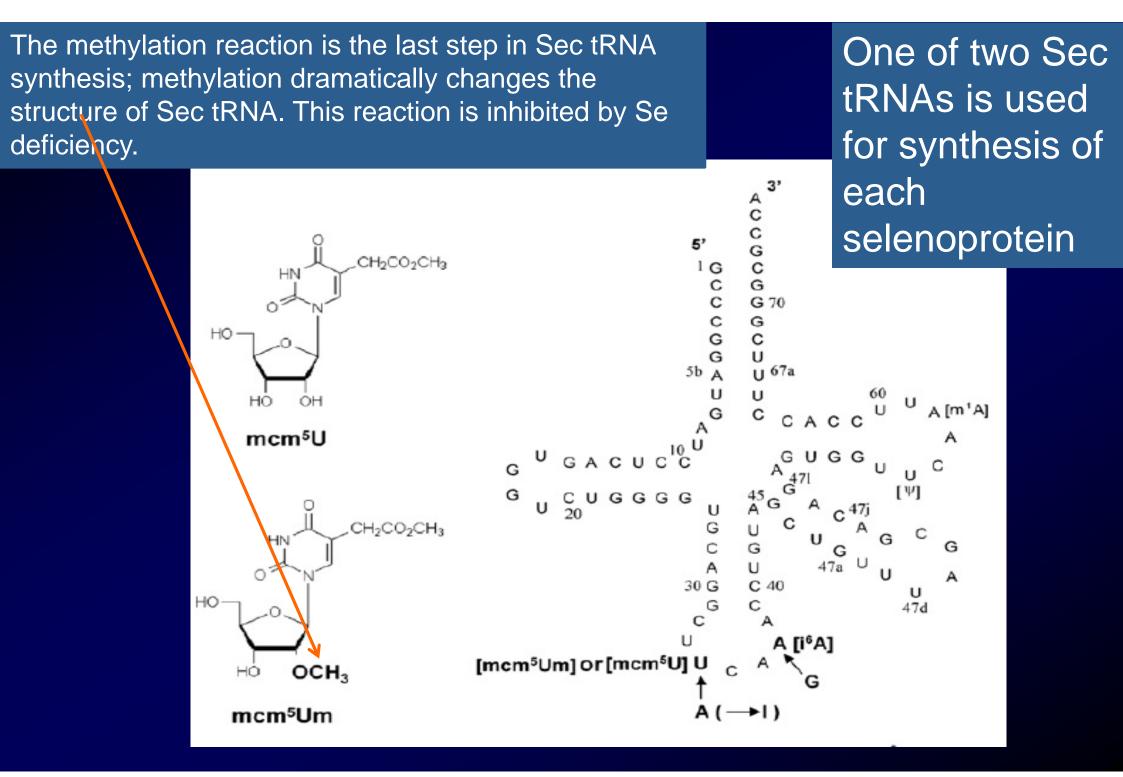
F2 (Prothrombin) F7 F9 F10 (Anticoagulant protein C) Osteocalcin Gas 6 protein Matrix Gla protein TGFBI Periostin (Anticoagulation Protein Z)

5 Lethal KO

6 nonlethal KO

# Four Causes of Functional Deficiency of VKD-Proteins in Humans

| Non-lethal<br>VKD-<br>protein  | Function                                              | Mouse<br>Knockout<br>Phenotypes        | Human<br>Mutants                                                          | Anticoagulant<br>Therapy                   | Modest<br>VitK<br>deficiency         |
|--------------------------------|-------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------|--------------------------------------------|--------------------------------------|
| Osteocalcin                    | Bone struct.<br>Glucose<br>homeostasis                | Fragile bones<br>Insulin<br>resistance | BMD loss<br>(SNPs)                                                        | Bone health<br>(men/children/rats)         | Bone health<br>Insulin<br>resistance |
| Matrix Gla<br>Protein<br>(Mgp) | Negative<br>regulator of<br>vascular<br>calcification | Arterial<br>calcification              | Abnormal soft<br>tissue<br>calcification<br>(Keutel<br>Syndrome;<br>SNPS) | Arterial<br>calcification<br>(humans/rats) | Arterial calcification               |


McCann & Ames (2009) Vitamin K, an example of triage theory: is micronutrient inadequacy linked to diseases of aging? Am J Clin Nutr *90,889-907.* 



Selenium deficiency, genetic impairment of nonessential selenoproteins, and diseases or conditions associated with aging

| Selenoproteir                                                      | Se dietary loss                                                   |                                                                        |
|--------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|
| Rodent                                                             | Human                                                             | Human                                                                  |
| Gpx1 KO: Senescence                                                |                                                                   | Mortality                                                              |
| Gpx2 KO: UV-induced cancer                                         | Gpx1 SNP, LOH, HYP: Various cancers                               | Cancer                                                                 |
| Gpx1 Knockdown: UV-induced micronuclei                             |                                                                   | DNA damage                                                             |
| Gpx1 Heterozygote: Heart<br>abnormalities                          | Gpx3 SNP: Stroke & thrombosis<br>Dio2 SNP: Hypertension (mixed)   | Heart disease, hypertension, mortality;<br>Keshan's disease            |
| Gpx1 KO: Viral induced myocarditis<br>Gpx2 KO: Airway inflammation |                                                                   | Reduced resistance to infection (primarily viral)                      |
|                                                                    | Dio1 SNP: Muscle weakness<br>SELN Homozygote: Myopathy            | Muscle weakness/muscular dystrophy-<br>like symptoms                   |
| Dio2 KO: Bone fracture                                             | Dio2 SNP: Osteoarthritis                                          | Kashin-Beck disease<br>(osteoarthropathy)                              |
| Gpx1 KO: Induced neurotoxicity                                     | Dio2 SNP: Retardation (+ iodine def);<br>psychological well-being | Poor cognitive function (1 study)<br>Mental retardation (+ iodine def) |
| Gpx1 KO: <u>Less</u> fat-induced insulin resistance                | Dio2 SNP: Insulin resistance (mixed)                              | Increased type 2 diabetes risk in older men (1 study)                  |

#### McCann and Ames FASEB J 2011

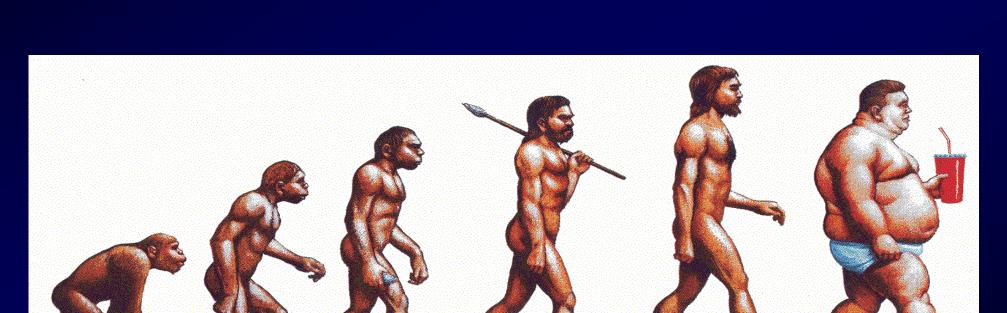


### **Immune Risk Phenotype of Aging**

- Lower CD4 and CD8 T-lymphocytes
- >Increase in anergic effector (CD8+CD28-) T-cells
- Low lymphoproliferative response
- Decline in antigen-presenting cells
- Decreased expression of co-stimulatory molecules
- Decline in IL-12 production and Th1 response

### Immune Risk Phenotype of Aging

Lower CD4 and CD8 T-lymphocytes Def: vit A., zinc, folate Increase in anergic effector (CD8+CD28-) T-cells Def: tryptophan, zinc, Low lymphoproliferative response Def: vit C, vit E, zinc. Vit B6 > Decline in antigen-presenting cells Def: vit E Decreased expression of co-stimulatory molecules Def: vit E, tryptophan. zinc Decline in IL-12 production and Th1 response Def: vit B6, Vit E, zinc


# Variation in chromosomal DNA damage rates within and between age groups measured as MN frequency.

**Healthy Non-smoking Healthy Non-smoking** Females Males 50 100 90 MN per 1,000 BN cells ۸ 40 0-0 MN per 1,000 BN cells 80 . . 4 70 820 ドンの全体の 30 60 o<sup>0</sup> 50 × 7.2.2 20 40 30 10 20 10 O 0 18-25 26-35 36-45 46-55 56-65 66-75 76-90 8-25 26-35 36-45 46-55 56-65 66-75 76-90 а b Age (years) Age (years)

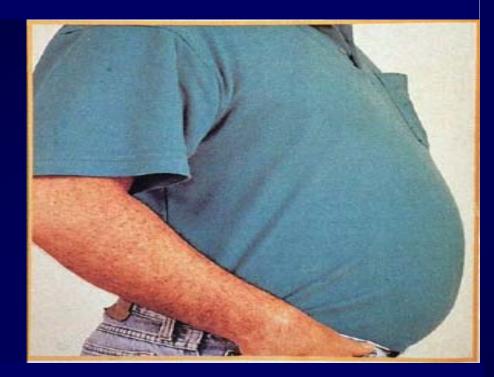
Fenech 2007, Forum Nutr.

# Benefits of a Triage Analysis

- Provides a mechanism for how moderate V/M deficiency increases risk of a disease of aging, and suggests a prevention strategy.
- 2. Indicates about half of proteins analyzed are "longevity proteins" which suggests:
  - a) biomarker assays for setting EARs; and
  - b) a class of undiscovered "longevity V/Ms".



The Economist, December 13, 2003




### Top Sources of "Nutrition" for 20-30 year olds

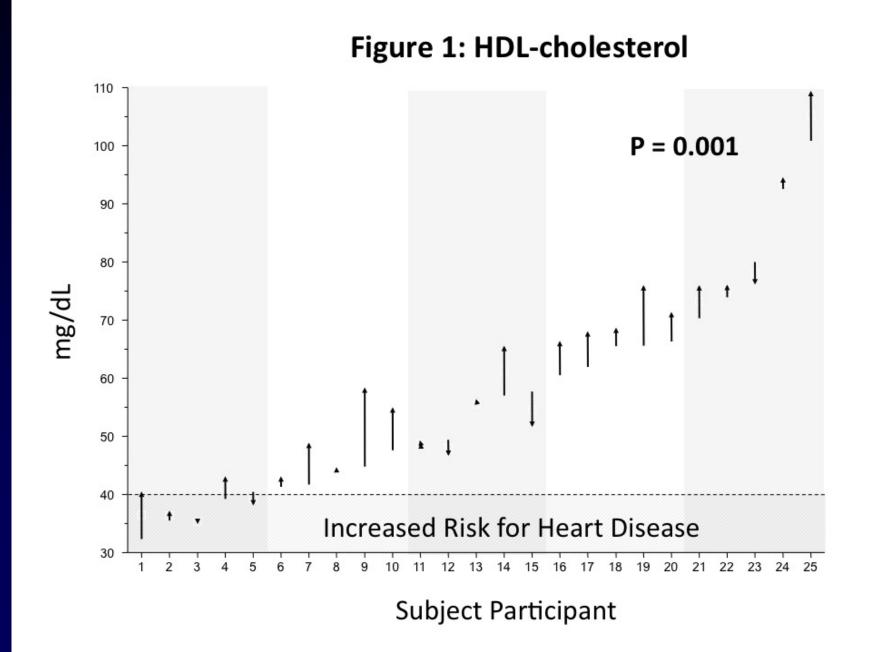
|                                      | <u>% total energy</u> |
|--------------------------------------|-----------------------|
| 1. Regular soft drinks               | 8.8                   |
| 2. Pizza                             | 5.1                   |
| 3. Beer                              | 3.9                   |
| 4. Hamburgers, meat loaf             | 3.4                   |
| 5. White bread                       | 3.3                   |
| 6. Cake, doughnuts, pastries         | 3.3                   |
| 7. French fries, fried potatoes      | 3.0                   |
| 8. Potato chips, corn chips, popcorn | 2.7                   |
| 9. Rice                              | 2.6                   |
| 10. Cheese or cheese spread          | <u>2.5</u>            |
|                                      | 38.6%                 |

NHANES III (1988-1994) Wakimoto P & Block G. J Gerontol A Biol Sci Med Sci, 2001

# **CAUTION: HAZARDOUS WAIST**



Visceral fat increases your risk of cancer, heart disease, cognitive dysfunction, diabetes, etc. Start a waist disposal program today.


## Supplementation Strategies



# Conventional

- cumbersome
- compliance
- incomplete

- CHORI Bar
- convenient
- complete



### Life Expectancy of Men and Women at Birth



SOURCE: National Institute on Aging



Jung Suh



Joyce McCann



**Nutrition & Metabolism Center** 

**Bruce Ames** 



Swapna Shenvi



David Killilea



Ash Lal



Michele Mietus-Snyder Mark Shigenaga



Sandy Calloway



Harold Helbock

